If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+4x-26=0
a = 16; b = 4; c = -26;
Δ = b2-4ac
Δ = 42-4·16·(-26)
Δ = 1680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1680}=\sqrt{16*105}=\sqrt{16}*\sqrt{105}=4\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{105}}{2*16}=\frac{-4-4\sqrt{105}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{105}}{2*16}=\frac{-4+4\sqrt{105}}{32} $
| 8(x+8)=9x+3 | | 1=m/5-4 | | 3=2p+1 | | X+40+3x-82=180 | | -14x-138=-3x+93 | | (7x-23)+(11x+23)=180 | | z/6-2=3 | | 3x+8+2x-5=7x13 | | -31-x=33-5x | | 9y=14+7y | | .25x-10=-50 | | 5+6a=17 | | -3w+13=-28 | | X-15=51-x | | x=48-7x | | t/3-3=6 | | x/6-6=5 | | 6-2m=26 | | -4v-8=-8v | | 7x-11+4x+15=125 | | 5(x+10)=6x+3 | | 2(5-x)/8=x+ | | -1/5+y=5/6 | | x/6-6=10 | | 51=2x-15 | | 12x+42=42 | | Z=-4a+1 | | x-15+3x=21 | | 108/9=n | | 7d+6=9d | | 5(x-12)=x+12 | | 12*9=n |